计算机视觉人脸识别 Face Recognition

人脸识别并动态贴图 实现抖音动态小表情

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import cv2
import time
import datetime
from PIL import Image

cap = cv2.VideoCapture(0)

''' 人脸识别 '''
def getface(img):
# 人脸识别数据
face_cascade = cv2.CascadeClassifier(
'C:/ProgramData/Anaconda3/envs/pra/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml')
# 人眼识别数据
eye_cascade = cv2.CascadeClassifier(
'C:/ProgramData/Anaconda3/envs/pra/Lib/site-packages/cv2/data/haarcascade_eye.xml')
# 二值化,变为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 获取人脸识别数据
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
# 绘画人脸识别数据
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# 根据人脸识别数据添加头像
img = christmas(img, x, y, w, h)
return img


def christmas(img, x, y, w, h):
im = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 你的贴纸地址
mark = Image.open("hat/111.png")
height = int(w * 987 / 1024)
mark = mark.resize((w, height))
layer = Image.new('RGBA', im.size, (0, 0, 0, 0))
layer.paste(mark, (x, y - height + 100))
out = Image.composite(layer, im, layer)
img = cv2.cvtColor(np.asarray(out), cv2.COLOR_RGB2BGR)
return img


videoWriter = cv2.VideoWriter('testwrite.avi', cv2.VideoWriter_fourcc(*'MJPG'), 15, (1000, 563))

while (cap.isOpened()):
ret, frame = cap.read()
if ret == True:
# 从新定义图片大小
img = cv2.resize(frame, (1000, 563))

# 添加录像时间
# img = addtime(img)
# 实时识别
img = getface(img)
# 视频显示
cv2.imshow('frame', img)
# 保存视频
videoWriter.write(img)
if cv2.waitKey(10) & 0xFF == ord('q'):
print("退出视频")
break
else:
break

cap.release()
videoWriter.release()
cv2.destroyAllWindows()

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2024 HELLO WORLD All Rights Reserved.

UV : | PV :